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1. INTRODUCTION

For a functionf, continuous on [0, 1], the nth (n ~ 1) Bernstein polyno
mial of f is the polynomial of degree :::;; n defined by

Bn(f) is a polynomial, so there exists for every J1. E (0, 1] a constant A such
that Bn(f)ELiPAJ1. (where A may depend on f and J1.). Brown et al. [2]
gave an elementary proof that the Lipschitz constant is preserved, i.e.:

THEOREM 1. Iff ELipA J1., then for all n ~ 1, Bn(f) E LipA J1..

For a brief history of the problem see [2]. By using some simple results
from probability theory, we shall prove that the identical result holds for
a general class of univariate and multivariate approximation operators.
This class includes the Szasz, Bernstein, Gamma, and translation
operators, the tensor product operators formed from them,' and the
Bernstein operators over simplices. The central idea is to exploit the split
ting property of the probability distributions involved in these approxima
tion operators.

In this paper a function from a convex subset I k ~ IRk into IR is said to
be Lipschitz continuous of order J1., J1. E (0, 1], if there exists a constant
A ~ 0 such that for every pair of points x, y E Ik we have

If(x) - f(Y)1 :::;; A Ilx - ylll'

(11·11 is the I[ norm in IRk). We write this as f E Lip A J1.(Ik) or simply
fELipA J1., suppressing the I k •

307
0021-9045/8953.00

Copyright © [989 by Academic Press, [nco
All rights of reproduction in any form reserved.



308 KHAN AND PETERS

We shall use the multivariate Feller operator which generalizes the
above-mentioned approximation operators. For the properties of the Feller
operator see [4,6,9]. Let f E C(Id, Suppose that Sn, .. n;;:: 1, is a sequence
of k-dimensiona1 random vectors over I k with E(Sn,J = nx and with
Cov(Sn,x' Sn,x) = (T~(x) a non-singular variance-covariance matrix, where x
is a k-dimensional vector of parameters. Stancu [9] defined the multi
variate version of the Feller operator:

Ln(f, x) := E {f (S~,x)}

:= f~x '''Jxxf(~,oo.,~)dFn,Atl,.oo,td,

where Fn,x is the joint distribution function (df) of Sn,x and
E If(Sn.xln)1 < 00. In the next section the principal result is proved. A few
special cases are outlined in the last section.

2. PRINCIPAL RESULT

The tool used to prove Theorem 1 is to split a binomial random variable
into a multinomial random vector. Consider the experiment of rolling n
times a three-sided die that has sides one and two colored blue and side
three colored white. Let Sn be the number of times blue comes up, U be the
number of times side one comes up, and V be the number of times side two
comes up. Sn has the same probability distribution as U + V, i.e.,
P(Sn=k)=P(U+V=k), k=0,1,oo.,n, which we write as Sn"'U+v.
This shows that a binomial random variable Sn can be split into a tri
nomial random vector (U, V) such that Sn '" U + V. If the probability of a
blue face coming up on one roll is x and the probability of side one coming
up is y (clearly x;;:: y) then the expected value of V, E( V), is n(x - y). Also
note that Bn(f, x) = Ef(Sn/n) = Ef( (U + V)/n) and Bn(f, y) = Ef( U/n). We
formalize this concept of the splitting of a random variable in the following
definition:

DEFINITION. The random vector Sn,x is said to have the splitting
property if for every x, y E h there exist random vectors U, Rx , and Ry
such that U, Rx , and Ry are defined over the same probability space with

and
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The random vectors R x and Ry need not be independent of U. For k = 1
and x> y, the splitting property would hold if Sn.x '" U+R, and Sn,y '" U,
where E IRI ~ n(x - y) and U and R are defined over the same probability
space. The main result of this paper is the following:

THEOREM 2. Assume that Sn x has the splitting property. Iff E Lip A ll(Ik)
then Ln(f) E Lip A Il(h) (0 < 11 ~ I).

Proof Split Sn,x and Sn,y. Then

ILnU; x) - Ln(f' y)1 = IEf(S~,x) -Ef (S~y)1

= \Ef(U:Rx)_Ef(U:R
y
)\

~E k(U: Rx) _ f(U: Ry)l.

The equality holds by the splitting property and the last inequality follows
since the underlying probability space is the same. Consequently,

ILnU; x)-Ln(f' y)j ~AE(\\Rx :Ryr)

~A (E IIR
x

:RyIIY

The first inequality is due to the Lipschitz hypothesis, the second inequality
is by Jensen's inequality, and the last inequality follows by the splitting
property. This completes the proof.

Remark. The converse of Theorem 2 is trivially true if Ln(f, x) -+ f(x)
as n -+ 00.

Remark. Since the lp norms have the property

where Cp = k 1
/
p -1, it follows that iff E LiPA(j.l, p) (i.e., LipA 11 with respect

to the lp norm, 1 < p) and Sn.x has the splitting property then Ln(f) E

LipA.(Il, p), where A* = C;11 A.
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1. Bernstein Operator

Let
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3. SPECIAL CASES

k=O, 1, .., n.

For this distribution Ln(f, x) reduces to Bn(f, x). Let (U, V) have a tri
nomial distribution [5J with parameters (n, XI' Xz -XI)' where o<xz < 1,
O<x l <xz, i.e.,

n! . / . /
P( U = j, V = l) = ., II ( _. -I)' x{ (x z - XI) (1 - xzt - J - ,

J . . n J .

j = 0, 1, 2, ..., n; 1=0, 1, ... , n; j + I ~ n. The joint moment generating
function (mgf) of (U, V) is

Hence, by letting t I = t z we get Sn, X2 '" U + V. Also note that by letting
tz =°we get U", Sn,xl and similarly V", Sn,x2 _ Xl' Furthermore E IVI =
E(V)=n(xz -xd. Therefore by taking V=R, we have that Sn,x has the
splitting property and Theorem 1 follows from Theorem 2.

2. SZGSZ Operator

Let P(Sn,x=k)=exp(-nx)(nx)kjk!; k=O, 1,2, ... , and x>o. Ln(f,x)
reduces to the Szasz operator [6J

-nx 00 (k) (nx)k
Sn(f,x)=e L f - -k

l
•

k=O n .

Define the joint probability distribution of (U, V) as

(nx )j (n(x - X ))/P(U=j V=l)=e-nXl __I_e-n(X2-X!l z I
, j! l!'

j = 0, 1, 2, ... ; 1=0, 1, ... ; °< XI ~ Xz. Again, it is easily verified that

P( U + V = k) = L P( U = j, V = l) = P(Sn, X2 = k)
O';;'j+/~k

for all k = 0, 1, .... Also note that U, V are independent Poisson random
variables and E(V)=n(xz -xd. Taking U=Sn,XI' and V=R, we have by
Theorem 2 that if f E Lip A p. then Sn(f) E Lip A p..
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3. Baskakov Operator

Let Sn,x have a negative binomial distribution with parameters (n, x),
x >0, i.e.,

(
n + k - 1)( X )k

P(Sn, x =k) = (1 + x) - n k 1+ x '

The Feller operator reduces to the Baskakov operator

B:U, x) = ~ j (~) P(Sn,x = k).
k=O n

k = 0,1,2, ....

Let (U, V) have negative multinomial distribution [5] with parameters
(n, PI' pz), where O<PI, pz; and let q= PI + pz + 1.

P(U=' V=/)=(n+ i +l-l)! -n(PI)j(PZ)!
J, "1'( -1)' q ,J . . n. q q

i=O, 1, ... ; 1=0, 1, .... The mgf of (U, V) is

By letting t l = t z we have that U + V has a negative binomial distribution
with parameters (n, PI + pz). By letting tz = °we get that U", Sn.Pl' and
similarly V", Sn.pz. Therefore, for °< XI < Xz, by taking PI = XI and pz =
Xz -XI we have that

Also, E(V)=n(xz-x l ). Hence, by Theorem 2, ifjELipAJ! then B:U)E
LipA J!.

4 Gamma Operator

For x> 0, the Gamma operator is defined as

Let Sn,x have the probability density function

{

-n
X n-I -ylx

( ) _ (n - I)! Y e
gSn,x y -

°

if y>O

if y ~O.

Then LnU, x) reduces to GnU, x). It is easy to check that XSn,1 '" Sn,x'
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Therefore, if 0 < x I < X 2 then

"'XI Sn, I + (X 2 -XdSn,l

'" Sn,xl + R.

Note that Sn,xl and R are dependent random variables and R", Sn,x2 - Xl'

Also, E(R) = n(x2 - x d, which implies, by Theorem 2, that Gn(f) E LipA P.
iff E LipA p..

5. Translation Operators

To consider positive translation operators (also known as convolution
operators [10]), let Hn(t-x) be the kernel for the translation operator

Tn(f,x)= r>: f(t)d(Hn(t-x)
-00

= foo f(u +x) dHn(u).
- 00

Let Zn be a random variable having df Hn(z) and define Sn,x :=n(x+Zn).
For this case Ln(f, x) reduces to the translation operator Tn(f, x). For
X 2 >X I

where R is a degenerate random variable taking the value n(x2 -xd with
probability one. Hence, by Theorem 2, iff E LipA P. then Tn(f) E LipA p.. In
the following some of the typical translation operators are provided.

(i) Fejer Operator [3, p. 34]:

1 f1/2 [Sin nrcu J2Fn(f, x) =- f(u + x) -.-- duo
n -1/2 sm rcu

(ii) Korovkin [1, 7]:

Let ¢J be a non-negative, even, and continuous function on [- r, r],
decreasing on [0, r] and such that ¢J(O) = 1, and 0 ~ ¢J(t) < 1 for 0 < t ~ r.
For a continuous f on I = [a, b] with b - a ~ r,

Kn(f, x) = Pn rf(t) r(t - x) dt,
a

n= 1, 2, ...,
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LIPSCHITZ CONSTANTS FOR OPERATORS

1= 2Pn r,pn(t) dt.
o
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Since Kn(f, x) is a special case of Tn(f, x), iff ELipA Ji then Kn(f) ELipA Ji.
Several classical smoothing operators [8] such as the Weierstrass and
Picard operators are special cases of Kn(f, x).

6. Bernstein Operator over a Simplex

Let Sn.x = (Sn.w ... , Sn,xk) have a multinomial distribution with param
eters (n, XI, ...,Xkl I-xl-···-xd, where x=(xl, ...,xdELJk=the
standard simplex. That is, LJk={(xj, ...,xd: O::::;x;::::;I; i=I,2, ...,k; and
x I + ... + X k ::::; 1}. For a continuous f defined over LJ kl the Bernstein
operator is defined as

Bn,k(f, x) =L fUln) P(Sn,x = J),
j

whereJ= (JI, ..., Jd;J; ~O; i= 1, 2, ..., k;JI + ... + Jk::::;n and

k

X (I-xI -X2 - .. , -xdn - h - ... -jk n X~i

;=1

is the multinomial distribution [5] with parameters (n, XI' ..., Xkl
1- L ~= I XJ Let f ELip A Ji. For x =F Y define a 2k-dimensional random
vector (U, V) having multinomial distribution [5] with parameters

(n, x:, ..., xt, IXI-YII, ..., IXk - Ykl, 1- ;tl x;* - ;tl Ix; - Yil)

where U is a k-dimensional multinomial with parameters (n, x*,
1 - L~= I x;*) and V is a k-dimensional multinomial with parameters
(n, IXI - YII, ..., IXk - Yk I, 1- L~~ I Ix; - Yil) and x* = (min(xj, yd, ...,
min(xkl Yk))' Let ci = 1 if x; > Y; and Ci =0 otherwise, i= 1, 2, ..., k. Define
Rx = (VI Cl' ..., Vkcd and Ry = (VI(I- cd, ..., Vk(l- ck)). Note that

and

where U""" Sn,x.' Also since 2ci -1 = 1 or -1, IIRx - Ry II =
VI + V2 + ... + Vk • Therefore, jlR x - R v II has a binomial distribution with
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parameters (n, Ilx - yll). Hence, Sn.x has the splitting property and there
fore by Theorem 2 if f E Lip A f.l then Bn.k(f) E Lip A f.l.

7. Tensor Product Operators

For the tensor product operators formed by the Bernstein, Szasz,
Baskakov, Gamma, and Weierstrass operators the same result holds. For
this more general setup, we need to modify Ln(f, x) to incorporate the
tensor product operators with different ni, i = 1, 2, ..., k. Let Sni. x" i =
1,2, ..., k, be mutually independent univariate random variables defined
over I~ IR having the univariate splitting property. Define Sn.x =

(Snhxl,,,,,SnPk)' where x=(x]"",Xk) and n=(n], ...,nd. The tensor
product operator for f E C(lk), h = Ix Ix ... x I, is defined as

L (f, ) = Elf (Snhx, Sn2. x2 Snk.xk)
n ,x " ...,.

n1 nz nk

If Sni.xi has df Fni.x,(t;), i= 1, 2, ..., k, then by the mutual independence of
the random variables the joint df of Sn.x is

k

Fn,At) = n Fn,.x, (t;),
i~ 1

where t = (t], ..., tk)' Let x, y E I k be fixed vectors. By the univariate split
ting property there exist random variables Vi' R~" and R~, defined over the
same probability space such that Sn"x, ~ Vi + R~" Sn" y, ~ Vi +R~" and
EIR~,-Rl,l~nilxi-Yil, i=1,2, ...,k. Let V=(V], ...,Vk), Rx =
(R;" ..., R Xk )' and Ry = (R~" ..., R~J Define the joint df of (V, Rx, Ry ) to
be the product measure of the measures of (Vi' R~i' R~), i = 1, 2, ..., k,
so that the random vectors (Vi' R~" R~), i = 1, 2, ..., k, are mutually inde
pendent. By the univariate splitting property and independence,

and

Also, by the univariate splitting property, E IR~i - R~,I ~ni IX i - yJ We
have that

Hence, the tensor product operators are LipA f.l for f E LipA f.l whenever the
univariate operators have the splitting property.
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